Hall Ticket No.:												Set-1
------------------	--	--	--	--	--	--	--	--	--	--	--	-------

Course Code: 23MTVLT01 MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

I - M.Tech. I - Semester (MR23) Regular Examinations, March - 2024

CMOS ANALOG IC DESIGN

Department of Electronics & Communication Engineering

Time: 3 hours

Max. Marks: 75

Answer ALL the questions – 5*15=75 Marks

Q. No.		Question	Marks	со	BL	
	a)	Explain about Short channel Effects for MOS Transistor.	(7M)	CO1	L3	
1	b)	Derive the expression for I/V Characteristics of MOS Transistor and obtain the relationship between I_D of MOSFET and its terminal voltage.	(8M)	CO1	L4	
	(OR)					
2	a)	Using small signal analysis, Derive an expression for the output resistance of the cascode current source.	(8M)	CO1	L3	
2	b)	With necessary schematics, obtain the small-signal model of CS stage including transistor output resistance.	(7M)	CO1	L4	

3	а	Explain why the Gilbert cell can operate as an analog voltage multiplier.	(8M)	CO2	L3
	b	Sketch the Input-Output characteristics of a differential pair and explain its operation.	(7M)	CO2	L4
(OR)					
4	а	With relevant expression of active current mirror signal of the differential pair with current-source load and calculate the value of g_m and R_{out}	(8M)	CO2	L3
	b	Discuss about the Common-mode properties of the differential pair with active current mirror	(7M)	CO2	L3

	а	Explain about the high frequency model of common-source stage and sketch the characteristics	(7M)	CO3	L4
5	b	For the common-gate stage shown in Fig(a), calculate the transfer function and the input impedance , Z_{in} . Explain why Z_{in} becomes independent of C_L as the capacitance increases $\begin{array}{c} & & \\ &$	(8M)	CO3	L4

(OR)							
	а	Explain about the different types of Noises generated in Integrated (8M)					
6	b	Consider the RC circuit shown in fig (b), calculate the noise spectrum and the total noise power in V_{out} \overrightarrow{R} \overrightarrow{C} $\overrightarrow{V_{out}}$ $\overrightarrow{V_R}$ $\overrightarrow{V_R}$ \overrightarrow{C} $\overrightarrow{V_{out}}$	(7M)	CO3	L3		

7	а	Discuss briefly about the different Feedback topologies with necessary Schematics	(15M)	CO4	L3		
		(OR)	$\langle \rangle \rangle$				
8	а	Explain about Two-stage opamp with single-ended output with neat sketch	(7M)	CO4	L3		
0	b	State and discuss about the Slew rate in the linear op amp circuit	(8M)	CO4	L3		

9	а	what is a comparator and list the important characteristics of a comparator	(8M)	CO5	L4		
	b	Explain about Open loop comparator	(7M)	CO5	L4		
		(OR)					
	а	With relevant schematics explain about discrete-time comparators.	(8M)	CO5	L3		
10	10 b How to improve the performance of an open loop high gain () comparator by auto zeroing?				L3		