
MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS)

I - M.Tech. I - Semester (MR23) Regular Examinations, March - 2024
 CMOS ANALOG IC DESIGN
 Department of Electronics \& Communication Engineering

Time: 3 hours
Max. Marks: 75

Answer ALL the questions-5*15=75 Marks

Q. No.	Question		Marks	CO	BL
1	a)	Explain about Short channel Effects for MOS Transistor.	(7M)	CO1	L3
	b)	Derive the expression for I/V Characteristics of MOS Transistor and obtain the relationship between I_{D} of MOSFET and its terminal voltage.	(8M)	CO1	L4
(OR)					
2	a)	Using small signal analysis, Derive an expression for the output resistance of the cascode current source.	(8M)	CO1	L3
	b)	With necessary schematics, obtain the small-signal model of CS stage including transistor output resistance.	(7M)	CO1	L4

3	a	Explain why the Gilbert cell can operate as an analog voltage multiplier.	(8M)	CO2	L3
	b	Sketch the Input-Output characteristics of a differential pair and explain its operation.	(7M)	CO2	L4
(OR)					
4	a	With relevant expression of active current mirror signal of the differential pair with current-source load and calculate the value of gm_{m} and Rout	(8M)	CO2	L3
	b	Discuss about the Common-mode properties of the differential pair with active current mirror	(7M)	CO2	L3

5	a	Explain about the high frequency model of common-source stage and sketch the characteristics	(7M)	CO3	L4
	b	For the common-gate stage shown in Fig(a),calculate the transfer function and the input impedance, $Z_{\text {in }}$. Explain why $Z_{\text {in }}$ becomes independent of C_{L} as the capacitance increases	(8M)	CO 3	L4

(OR)				CO3	L4
	a	Explain about the different types of Noises generated in Integrated Circuits	(8M)		
6	b	Consider the RC circuit shown in fig (b), calculate the noise spectrum and the total noise power in $V_{\text {out }}$	(7M)	CO3	L3

$\mathbf{7}$	a	Discuss briefly about the different Feedback topologies with necessary Schematics	(15M)	CO4	L3					
(OR)										
$\mathbf{8}$	a	Explain about Two-stage opamp with single-ended output with neat sketch	(7M)	CO4	L3					
	b	State and discuss about the Slew rate in the linear op amp circuit	(8M)	CO4	L3					

$\mathbf{9}$	a	what is a comparator and list the important characteristics of a comparator	$(8 \mathrm{M})$	CO5	L4	
	b	Explain about Open loop comparator	$(7 \mathrm{M})$	CO5	L4	
	(OR)					
$\mathbf{1 0}$	a	With relevant schematics explain about discrete-time comparators.	$(8 \mathrm{M})$	CO5	L3	
	b	How to improve the performance of an open loop high gain comparator by auto zeroing?	$(7 \mathrm{M})$	CO5	L3	

